Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts

نویسندگان

  • Krishanthi S. Karunatilaka
  • Elizabeth A. Cameron
  • Eric C. Martens
  • Nicole M. Koropatkin
  • Julie S. Biteen
چکیده

UNLABELLED Gut microbes play a key role in human health and nutrition by catabolizing a wide variety of glycans via enzymatic activities that are not encoded in the human genome. The ability to recognize and process carbohydrates strongly influences the structure of the gut microbial community. While the effects of diet on the microbiota are well documented, little is known about the molecular processes driving metabolism. To provide mechanistic insight into carbohydrate catabolism in gut symbionts, we studied starch processing in real time in the model Bacteroides thetaiotaomicron starch utilization system (Sus) by single-molecule fluorescence. Although previous studies have explored Sus protein structure and function, the transient interactions, assembly, and collaboration of these outer membrane proteins have not yet been elucidated in live cells. Our live-cell superresolution imaging reveals that the polymeric starch substrate dynamically recruits Sus proteins, serving as an external scaffold for bacterial membrane assembly of the Sus complex, which may promote efficient capturing and degradation of starch. Furthermore, by simultaneously localizing multiple Sus outer membrane proteins on the B. thetaiotaomicron cell surface, we have characterized the dynamics and stoichiometry of starch-induced Sus complex assembly on the molecular scale. Finally, based on Sus protein knockout strains, we have discerned the mechanism of starch-induced Sus complex assembly in live anaerobic cells with nanometer-scale resolution. Our insights into the starch-induced outer membrane protein assembly central to this conserved nutrient uptake mechanism pave the way for the development of dietary or pharmaceutical therapies to control Bacteroidetes in the intestinal tract to enhance human health and treat disease. IMPORTANCE In this study, we used nanometer-scale superresolution imaging to reveal dynamic interactions between the proteins involved in starch processing by the prominent human gut symbiont Bacteroides thetaiotaomicron in real time in live cells. These results represent the first working model of starch utilization system (Sus) complex assembly and function during glycan catabolism and are likely to describe aspects of how other Sus-like systems function in human gut Bacteroidetes. Our results provide unique mechanistic insights into a glycan catabolism strategy that is prevalent within the human gut microbial community. Proper understanding of this conserved nutrient uptake mechanism is essential for the development of dietary or pharmaceutical therapies to control intestinal tract microbial populations, to enhance human health, and to treat disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence

When presented with nutrient mixtures, several human gut Bacteroides species exhibit hierarchical utilization of glycans through a phenomenon that resembles catabolite repression. However, it is unclear how closely these observed physiological changes, often measured by altered transcription of glycan utilization genes, mirror actual glycan depletion. To understand the glycan prioritization str...

متن کامل

Functional diversity within the simple gut microbiota of the honey bee.

Animals living in social communities typically harbor a characteristic gut microbiota important for nutrition and pathogen defense. Accordingly, in the gut of the honey bee, Apis mellifera, a distinctive microbial community, composed of a taxonomically restricted set of species specific to social bees, has been identified. Despite the ecological and economical importance of honey bees and the i...

متن کامل

The Effect of Starvation on the Lipid and Carbohydrate Levels of the Gut of the Tropical Sea Urchin Echinometra mathaei

THE UTILIZATION dur ing starvation of the nutrient reserves in the gut of a temperate water sea urchin , Strongylocentrotus purpuratus, was measured by Lawrence et al. (1966) . There have been no investigations of the utilization of reserves in the gut of tropical urchins, although the level of reserves in the gut of several tropical species has been reported (Giese et al., 1964; Lawrence, 1967...

متن کامل

Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans.

UNLABELLED Many symbiotic gut bacteria possess the ability to degrade multiple polysaccharides, thereby providing nutritional advantages to their hosts. Like microorganisms adapted to other complex nutrient environments, gut symbionts give different metabolic priorities to substrates present in mixtures. We investigated the responses of Bacteroides thetaiotaomicron, a common human intestinal ba...

متن کامل

Comparative Genomic Analysis of the Endosymbionts of Herbivorous Insects Reveals Eco-Environmental Adaptations: Biotechnology Applications

Metagenome analysis of the gut symbionts of three different insects was conducted as a means of comparing taxonomic and metabolic diversity of gut microbiomes to diet and life history of the insect hosts. A second goal was the discovery of novel biocatalysts for biorefinery applications. Grasshopper and cutworm gut symbionts were sequenced and compared with the previously identified metagenome ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014